Cardiac Cycle (CC4, unit4)

By Sriparna Ray, Bidhan Chandra College, Asansol

OBJECTIVES.

* Introduction
* Phases of cardiac cycle
* Events during cardiac cycle
* Duration of each phase
* Applied Physiology.

INTRODUCTION

The heart as a pump.
2 separate pump in series.
Systole - contraction
Diastole - relaxation.
Cardiac cycle - both electrical \& mechanical events from beginning of
 one heart beat to beginning of next.

DURATION OF CARDIAC CYCLE

- IF Normal Heart rate is 75 beats /min
Duration of one (1) beat $=60 / 75$
$=0.8 \mathrm{sec}$.

PHASES OF CARDIAC CYCLE

- Atrial cycle (0.8)
${ }^{0}$ Atrial systole (0.1)
${ }^{0}$ Atrial diastole (0.7)
- Ventricular cycle (0.8)

『 Ventricular systole (0.3)

- Ventricular diastole. (0.5)

Events of Cardiac cycle

ATRIAL CYCLE

Atrial systole (0.1)
Coincide with last rapid filling phase of ventricles.
Before this valves are open, ventricles relaxed with already 75% blood
Contraction add only remaining 25\% blood.

EFFECTS OF ATRIAL SYSTOLE.

- Intraatrial pressure
${ }^{0}$ Right $-4-6 \mathrm{~mm} \mathrm{Hg}$.
${ }^{0}$ Left $-7-8 \mathrm{~mm} \mathrm{Hg}$.
$-\begin{aligned} & \text { Intraventricular } \\ & \text { pressure. }\end{aligned}$
- Narrowing of origin of great veinsDecreasing Venous
 Return.

ATRIAL DIASTOLE (0.7)

- Coincide with

Ventricular Systole \& most of the ventricular diastole.

- Atria Relax - gradual filling of atria pressure slowly increases.

VENTRICULAR CYCLE

- Ventricular systole (0.3) - phases
- Phase of Iso-Volumic (Iso-metric) Contraction
- Phase of ventricular ejection.
${ }^{1}$ Rapid phase
${ }^{\text {® }}$ Slow phase.

VENTRICULAR CYCLE (cont....)

Phase of Iso-Volumic (Iso-metric) Contraction (0.05)
When intra-ventricular pressure rises - closes AV valves semilunar valves not yet open so contracts as closed chamber. No change in volume so called -Iso-Volumic contraction.
Sharp rise in Intraventricular pressure

VENTRICULAR CYCLE (cont....)

Phase of ventricular
ejection (0.25) - begins
with opening of semilunar valves.
Rapid phase (0.1) - 2/3 ${ }^{\text {rid }}$ of stroke volume ejected.

Rt ventricles velocity is less
than left but duration is more.
Slow phase.(0.15) - 1/3 ${ }^{\text {rod }}$ of stroke volume ejected.

VENTRICULAR CYCLE

Venntricular Diastole

 (0.5) - phases- Protodiastole
- Isovolumic or Isometric Relaxation phase.
- Rapid passive filling phase.

0. Reduced filling \&

ais Vemintunlar olizstorle

D. Wentutcolar systins Diastosis
Last rapid filling phase.

PROTODIASTOLE 0.04 sec.

Ventricular systole ends

- ventricles relax -

Intraventricular pressure falls - blood comes back from vessels to ventricles - semilunar valves closes - $2^{\text {mi }}$ heart sound

Causes Diacrotic Notch in pulse.

ISOVOLUMIC OR ISOMETRIC

Lasts for 0.06 sec
Begins with closure of semilunar valves.
A-V valves not yet open relax as closed chamber as volume remains same

- Iso-Volumic relaxation.

Ends with opening of A-V valves

RAPID PASSIVE FILLING PHASE.

- As A-V valves open atria till now in diastole filled with venous return with increased pressure causes - rapid passive filling of ventricles ($3^{\text {rd }}$ heart sound)

REDUCED FILLING \& DIASTOSIS

- As ventricles filling continues pressure differences reduces so filling rate decreases - Diastasis.
- Total blood transferred with rapid \& slow filling is 75\% of total atrial blood.

LAST RAPID FILLING PHASE.

- As said earlier - it coincide with atrial systole - add remaining 25 \% of blood to ventricles.
- With this ventricular cycle completes.

EVENTS DURING CARDIAC CYCLE

- Pressure changes.
${ }^{0}$ In Ventricles
${ }^{\square}$ In Atria.
${ }^{0}$ In Aorta
${ }^{4}$ In Pulmonary Artery.
- Volume changes.
- In ventricles
${ }^{0}$ During Atrial systole
${ }^{0}$ During Ventricular systole.

PRESSURE CHANGES. IN VENTRICLES

- During Atrial systole
- Ventricular systole
- Ventricular diastole.

PRESSURE CHANGES. IN VENTRICLES DURING ATRIAL SYSTOLE

- Which coincide with last rapid filling phase of ventricles pressure in ventricles is just above zero with contraction pressure rises
- Right $-6-7 \mathrm{~mm}$ Hg.
- Left - 7-8 mmHg.

PRESSURE CHANGES. IN VENTRICLES DURING VENTRICULAR SYSTOLE

Iso-volumic

contraction - 80mm
Hg.
Rapid ejection phase

- 120 mm Hg left side.
${ }^{0} 80 \mathrm{~mm} \mathrm{Hg}$ right side.
Slow ejection phase.
- Pressure starts declining.

PRESSURE CHANGES. IN VENTRICLES VENTRICULAR DIASTOLE.

Protodiastole - pressure drops rapidly - upto 80 mmHg .
Iso-volumic or Isometric Relaxation phase - 2-3 mm Hg.
Rapid passive filling phase further falls (GH)
Reduced filling \& Diastosis Pressure just above zero. Last rapid filling phase.

PRESSURE CHANGES IN ATRIA. DURING ATRIAL SYSTOLE

Just before systole pressure is just above zero \& slightly greater than ventricles
During systole sharply increasesleft - $7-8 \mathrm{~mm} \mathrm{Hg}$ \& right 6-7 mmHg.
Causes 'a' wave in JVP.

PRESSURE CHANGES IN ATRIA. DURING VENTRICULAR SYSTOLE.

Isometric contraction -

 due to sharp rise in pressure- A-V valves bulges in atria - 'c' waveEjection phase
${ }^{0}$ Intra-atrial pressure drops sharply.
${ }^{0}$ As papillary muscles pull A-V valves down - atrial volume rises \& pressure decreases.

PRESSURE CHANGES IN ATRIA. DURING VENTRICULAR DIASTOLE.

Iso-volumic relaxation

 phase - as A-V valve remains closed, due to venous filling - form ' v ' wave in JVPRapid passive filling phase - As A-V valves open passive filling Atrial pressure drops down just above zero.

PRESSURE CHANGES IN AORTA DURING ATRIAL SYSTOLE

- Pressure in Aorta is $\mathbf{8 0}$ mm Hg.

PRESSURE CHANGES IN AORTA DURING VENTRICULAR SYSTOLE

- During ventricular systole - aortic pressure is less than intraventricular pressure.
- As systole continues pressure reaches equal to ventricles (120 mm Hg)

PRESSURE CHANGES IN AORTA DURING VENTRICULAR DIASTOLE

During Protodiastole Aortic pressure is higher than ventricles - back flow of blood $-2^{\text {ri }}$ HS \& Diacrotic notch.

Rest of diastole - aortic pressure decline slowly up to 80 mm Hg .

PRESSURE CHANGES IN PULMONARY ARTERY.

- Similar to Aorta but pressures are low.
- Systolic pressure goes up to 15-18 mm Hg.
- Diastolic pressure up to $\mathbf{8 - 1 0} \mathbf{~ m m ~ H g}$.

VOLUME CHANGES. IN VENTRICLES

During Atrial systole

Coincide with last rapid filling phase
Out of total 130 ml (EDV) in ventricles, 105 ml (75\%) blood already reaches ventricle before systole 25 ml (25\%) transferred due to atrial systole.

VOLUME CHANGES. IN VENTRICLES

During Ventricular systole.

- Iso-volumic contraction no change
${ }^{\text {® }}$ Ejection phase -80 ml stroke volume,
『 Ejection fraction (80/130) = 65\%
- $\mathrm{ESV}=50 \mathrm{ml}$.

VALVULAR EVENTS (HEART SOUNDS)

- First heart sound
\square Second heart sound
\square Third heart sound
- Fourth heart sound

FIRST HEART SOUND

Cause - closure of A-V valves.

Characteristics - 'LUBB', duration -0.15 sec, freq -$25-45 \mathrm{~Hz}$.
Site for auscultation Mitral \& Tricuspid area. Correlation with ECG coincide with peak of R

wave.

SECOND HEART SOUND

Cause - closure of semilunar valves.
Characteristics - 'DUBB', duration - 0.12 sec , freq 50 Hz .
Site for auscultation Aortic \& Pulmonary area. Correlation with ECG coincide with T wave.

THIRD HEART SOUND

Cause - Inrush of blood during rapid filling phase.
Characteristics -
Duration - 0.1 sec.
Correlation with ECG appears between T \& P wave.

FOURTH HEART SOUND

Cause - last rapid filling phase.
Characteristics -
Duration 0.03 sec , freq-
3 Hz .
Correlation with ECG appears between P wave 7 onset of Q wave.

CARDIAC MURMURS

Abnormal heart sounds during cardiac cycle.
 Mechanism of production - produced due to turbulent blood flow.

CARDIAC MURMURS

- Causes -
${ }^{0}$ Valvular stenosis
${ }^{0}$ Valvular insufficiency
『 Valvular septal defect.
${ }^{0}$ Coarctation of aorta
- Types
${ }^{0}$ Systolic
${ }^{4}$ Diastolic
${ }^{4}$ Continuous.

DURATION OF EACH PHASE

- Effect of heart rate -
- As HR 乌- cardiac cycle duration
- If HR 200, CC = $60 / 200=0.3 \mathrm{sec}$.
- Duration of each phases
- But diastole $\zeta>$ systole

APPLIED PHYSIOLOGY.

- Coronary blood flow to subendocardial area occurs during diastole - so diastole duration cardiac perfusion
- Ventricular filling also occurs during diastole S $\mathrm{HR} \stackrel{\mathrm{CO}}{ }$
"I if is like riding a bicycle, to stay
balanced you must keep moving." THANK YOU

